VERTICAL EXTERNALITIES REVISITED: NEW RESULTS

WITH PUBLIC INPUTS AND UNIT TAXATION

Diego Martínez*

* Universidad Pablo Olavide at Seville and GEN
Vertical externalities revisited: new results with public inputs and unit taxation

Diego Martínez*
University Pablo de Olavide at Seville and Government and Economics research Network (GEN)

Abstract

This paper studies the provision of public inputs in a federal system with unit taxation on labor. We use a model with vertical tax and expenditure externalities to analyze the efficiency of equilibria under different settings, particularly Nash and Stackelberg equilibria. Our results discuss some findings from the previous literature. First, both vertical externalities are interrelated each other. Second, the condition for production efficiency in the public sector becomes irrelevant to assess optimality. And third, the replication of the second-best outcome by the federal government behaving as Stackelberg leader crucially depends on the states’ reaction function.

Keywords: Fiscal federalism, vertical externality, productive public spending.

JEL Classification: H2, H4, H7

*This paper has been written over a long period throughout which I have benefited from the comments by T. Aronsson, A. Esteller, C. Kotsogiannis, M. A. López, T. Madies, A. Sole, an anonymous referee of the ECB WP Series, and seminar participants at Umea University, the European Central Bank, Foundation centrA at Seville, University Pablo Olavide at Seville, University of Malaga, Universitat Autonoma de Barcelona, and conference participants at the Congress of the IIPF and at the IEB Workshop on Fiscal Federalism. The usual disclaimer applies. Corresponding address: Diego Martínez. Department of Economics. University Pablo Olavide. Ctra. Utrera, km1. 41013 Seville (Spain). E-mail: dmarlop1@upo.es
1 Introduction

Literature on vertical externalities in a federal context has widely developed during the last years and, in a sense, seems to have arrived at a kind of exhaustion. This looks especially true when the comparison is made with the literature on horizontal externalities, which still shows a significant strength. However, the apparently lower interest on vertical externalities contrasts to the continuous generation of examples and real cases in which a more comprehensive understanding of the implications derived from vertical interactions between different levels of government could lead to better institutional designs.

For example, decentralized countries involved in nationwide fiscal reforms and/or facing fiscal consolidation processes (Spain, Italy, US) will live in short a revival of issues closely related to vertical externalities. The long-term debate on the fiscal relationships between Member States at different level in the European Union, especially in the Eurozone, may well reflect many of the theoretical and empirical discussions around vertical externalities as well.

In this context, the research on vertical externalities keeps a promising path to be developed as long as some relevant questions still remain without answers. For instance, in the presence of vertical expenditure and tax externalities, how general is the standard statement that both types of inefficiencies are independent each other, and consequently, separate policy measures are indicated? Or how sensitive are the usual results on the ability of the federal government to replicate the second-best outcome with respect to different types of public expenditures, taxes or availability of policy instruments?

Previous literature has mainly focused on vertical tax externalities, in which different levels of government share the same tax base. As is well-known, it leads to an overprovision of public goods as long as the deadweight loss of distorting taxation is underestimated by governments. Flowers (1988) deals with this issue through a Leviathan’s approach and shows how the federation may end up at the downward-sloping part of the Laffer curve. Papers such as Dahlby and Wilson (1994), Boadway and Keen (1996), and Sato (2000) find similar conclusions when a benevolent government is involved\(^1\). Moreover, these contributions propose different systems of vertical trans-

\(^1\)Nevertheless, Keen (1998) claims that the effects of federal taxes on state taxes are not so much straightforward as it might seem: under certain conditions, increases in the
fers that correct these externalities between governments. More recently, Esteller-Moré et al (2012) have inserted vertical tax externalities into the ground of political economy, with lobbying improving efficiency in federal countries with vertical tax competition.

Vertical externalities may also arise, however, when other aspects are regarded. Boadway at al. (1998) use a model with heterogeneous and partially-mobile agents to make explicit the trend of the states to be too progressive. Gordon and Cullen (2012) have complemented this paper by allowing non-linear tax schedules and focusing, among other things, on the negative vertical fiscal externality on the federal government. In terms of interregional trade, Lucas (2004) has shown how the federal government as Stackelberg leader can replicate the unitary nation optimum through matching grants in a federation with vertical and horizontal externalities.

An issue upon which the main branch of the literature has not paid much attention is the vertical externality coming from the provision of public inputs. This point refers to the positive or negative effects that the productive public spending by one level of government may exert on other levels’ revenues. As roughly suggested before, this phenomenon can be found in supranational structures such as European Union, in which an important share of its budget is devoted to regional policies based on the provision of infrastructures; there are no doubts that these types of policies have a positive impact on local, regional and federal budget constraints in many Member States.

Anyway, some papers have dealt with this concern. Dahlby (1996) describes the effects of expenditure externalities in a federation, and defines a general framework for matching grants in order to eliminate them. Wrede (2000) deals with productivity increasing public services in a federation consisting of Leviathan governments. Dahlby and Wilson (2003) examine a model in which state governments provide a productivity-enhancing public input; they conclude that this externality may have an ambiguous impact on federal revenues, and a matching grant from the federal government to the states is able to correct it.

This paper aims at providing some theoretical results which, given the specific features of the model used, confirm or modify some of the previously accepted results. In particular, we use the Boadway and Keen’s (1996) model to discuss the efficiency of equilibria when a public input is provided by state federal tax rate may reduce the state tax rates. Empirical evidence is miscellaneous (see, for instance, Esteller-More and Sole-Olle, 2001, and Anderson et al., 2004).
governments. We consider the positive impact of the public input on the wage rate through a higher labor productivity. Federal and state governments set per unit taxes on labor instead of the ad valorem taxes used by Dahlby and Wilson; this allows us to focus on the (likely) positive externality derived from the public input, rather than on other positive vertical externalities that may arise when ad valorem taxes are involved.

The behavior of governments has been modeled under different scenarios: as a central government in a unitary country, different governments as Nash competitors, and one level of government (the federal one) acting as Stackelberg leader while the other as follower. Moreover, we wonder about the ability of the federal government to achieve a second-best solution. At this point, we deal with restrictions by employing policy instruments: federal government are not allowed to make use of vertical grants to correct vertical externalities. This way, the paper tries to reproduce a common feature in real federations, namely, constitutional arrangements may prevent the design of intergovernmental transfers exclusively based on efficiency criteria.

The results show that, as Dahlby and Wilson (2003) and Martinez (2008) point out, the marginal cost of providing a public input may be underestimated in a federal system. However, contrary to the previous references, our paper finds that the difference between the unitary and the federal solutions is not independent of the vertical tax externality. The reasoning followed in this paper sharply contrasts to that of Dahlby and Wilson (2003) because we detect that production efficiency condition does not perform properly as criterion for assessing optimality in federal countries, as they do.

Moreover, since no vertical transfers are available in our model, the ability of federal government behaving as Stackelberg leader to replicate the second-best outcome is not straightforward. This paper demonstrates that when the set of policy instruments is restricted, the effectiveness of the federal tax rate to implement the second-best optimum depends on the state governments’ reaction to changes in federal taxes. We also obtain that the optimal federal tax rate can be positive, unlike Boadway and Keen’s (1996) findings but in line with Kotsogiannis and Martinez (2008), who deal with consumption public goods but under an ad valorem tax setting.

\[\text{In addition, this point also allows to relate our model with literature on optimal taxation and the availability of policy tools (see Stiglitz and Dasgupta (1971) and subsequent papers)}\]
The structure of the paper is as follows. Section 2 describes the main features of the model. Section 3 provides the second-best outcome achieved in a unitary country. Next section compares this result to those reached when the federal and state governments play Nash. Section 5 studies whether the federal government behaving as Stackelberg leader is able to replicate the second-best allocation. Finally, section 6 concludes.

2 The model

We assume a country with a federal government and \(k \) identical states to avoid unnecessary complexities by dealing with asymmetric allocations and horizontal grants for redistribution aims. Each state is populated by \(n \) identical households that are assumed to be completely immobile\(^{3}\). Household’s utility function is given by the separable form:

\[
 u(x, l) + B(G),
\]

where \(x \) is a private good used as numeraire, \(l \) is the labor supplied, and \(G \) is a pure public good provided by the federal government. The properties of the function \(u(x, l) \) are the standard ones, and \(B(G) \) is increasing and concave. The representative household faces the following budget constraint:

\[
 x = (\omega - \tau)l,
\]

where \(\omega \) is the wage rate and \(\tau \) the per unit tax on labor. Household’s optimization problem consists of maximizing (1) subject to (2), and that yields labor supply \(l'(\omega - \tau) \) and indirect utility function \(V(\omega - \tau) + B(G) \). It is assumed that \(l' > 0 \)^{4}.

Output in the economy is produced using labor services and the public input \(g \) according to the following aggregate state production function:

\[
 F(L, g),
\]

\(^{3}\)Relaxing the assumption of complete household immobility would have no effects on the efficiency of the equilibria and governments’ behavior, as long as the states are assumed to be symmetric (Proposition 4 in Boadway and Keen, 1996). By contrast, in the presence of (perfect or imperfect) inter-regional population movements and heterogenous states, the second best allocation does not require the equalization of the marginal cost of the public funds across regions and layers of government (Sato, 2000).

\(^{4}\)Hereafter, differentiation is denoted by a prime for functions of a single variable, while a subscript is used for partial derivatives.
where \(L = nl \). This function satisfies the usual assumptions: increasing in its arguments and strictly concave. Output can be used costlessly as \(x, G \) or \(g \). Labor market is perfectly competitive so that we can write:

\[
\omega = F_L [nl (\omega - \tau), g] \tag{4}
\]

It allows us to achieve the wage function \(\omega (g, \tau, n) \). Some results of comparative statics can be found now; they will be used later:

\[
\omega_g = \frac{F_{Lg}}{1 - F_{LLnl'}} > 0 \tag{5}
\]

\[
\omega_\tau = \frac{-F_{LLnl'}}{1 - F_{LLnl'}} > 0 \tag{6}
\]

Economic profit (rents) is defined as a residual, or

\[
\pi (g, \tau, n) = F [nl (\omega (g, \tau, n) - \tau), g] - nl [\omega (g, \tau, n) - \tau] \omega (g, \tau, n) \tag{7}
\]

Again, it is useful to obtain some results for later use:

\[
\pi_g = F_g - \left(F_{LLnl'} \omega_g + F_{Lg} \right) nl \leq 0 \tag{8}
\]

\[
\pi_\tau = (1 - \omega_\tau) F_{LLn^2l'} < 0 \tag{9}
\]

Note that the effect of public inputs on rents is ambiguous because \(g \) increases output (and hence, the economic profit) but also exerts a positive impact upon wage rate, reducing rents.

Each level of government sets its own tax rate on labor. Denoting \(T \) as the tax rate established by federal government and \(t \) as the corresponding variable at state level, it can be written \(\tau = T + t \). Thus, the revenue raised by federal government to finance \(G \) is:

\[
G (T, t, \theta, g, n, S) = k n T l (\omega (g, \tau, n) - \tau) + k \theta \pi (g, \tau, n) - k S, \tag{10}
\]

where \(0 \leq \theta \leq 1 \) is the proportional tax rate on profits levied by federal government, and \(S \) is a vertical transfer between both levels of government\(^5\).

Throughout this paper, \(\theta \) is assumed to be fixed and exogenously determined.

\(^5\)S may have either sign and it is defined as a lump-sum grant in the sense of Boadway and Keen (1996) or Sato (2000).
The effects of changes in T, t, g and S on federal budget constraint are given by:

$$G_T = (\omega_T - 1) knTl' + knl + k\theta \pi_T \quad (11)$$

$$G_t = (\omega_t - 1) knTl' + k\theta \pi_T = G_T - knl \quad (12)$$

$$G_g = knTl' \omega_g + k\theta \pi_g \quad (13)$$

$$G_S = -k \quad (14)$$

The state revenue constraint is

$$g_t (t, T, \theta, n, S) = ntl (\omega (g, \tau, n) - \tau) + (1 - \theta) \pi (g, \tau, n) + S \quad (15)$$

State government is the level of government providing the public input. Note that all economic profits are taxed away by both levels of governments because rents are efficient resources for public sector6. For future reference, the impacts of changes in t, T and S are obtained:

$$g_t = (\omega_T - 1) ntl' + nl + (1 - \theta) \pi_T \quad (16)$$

$$g_T = (\omega_T - 1) ntl' + (1 - \theta) \pi_T = g_t - nl \quad (17)$$

$$g_S = 1 \quad (18)$$

When one of the equations (12), (13) or (17) is different to zero a vertical externality arises. The equations (12)-(13) show how federal government’s tax revenues are affected by the fiscal decisions taken by state government on the tax rate and on the provision of the public input, respectively, while the equation (17) is the effect of the federal tax rate upon state government’s revenues.

3 The second-best allocation in a unitary country

Characterizing a vertical externality requires to consider the differences between the optimal solution in a unitary country, and the solution achieved when several levels of government exist. In this section, we obtain the first

6We establish here that the country is under-populated in order to avoid that tax on rents may suffice to finance the first-best level of public good (Wildasin, 1986).
order conditions for the optimal provision of the national public good \(G \) and the public input \(g \) in a unitary country.

The central government chooses the values of \(G, g \) and \(\tau \) to maximize the representative household’s utility subject to the aggregated budget constraint\(^7\). Formally,

\[
\text{Max} \quad V (\omega - \tau) + B (G) \quad \quad (19)
\]

\[
s.t.: \quad G + kg = kn\tau l (\omega (g, \tau, n) - \tau) + k\pi (g, \tau, n),
\]

First order conditions for \(G, g \) and \(\tau \) are, respectively, as follows:

\[
B' (G) - \mu = 0 \quad (20)
\]

\[
V'\omega_g - \mu k + \mu kn\tau l' \omega_g + \mu k\pi_g = 0 \quad (21)
\]

\[
(\omega_{\tau} - 1) V' + \mu knl + \mu (\omega_{\tau} - 1) kn\tau l' + \mu k\pi_{\tau} = 0, \quad (22)
\]

where \(\mu \) is the Lagrange’s multiplier. Combining (20) with (22), using Roy’s identity and the expressions (6) and (9), yields the familiar optimality rule for the provision of national public good \(G \) in a second-best environment:

\[
\frac{nkB' (G)}{\lambda} = \frac{1}{1 - \frac{\tau'}{\tau}}, \quad (23)
\]

where \(\lambda \) is the private marginal utility of income. LHS of equation (23) is the sum of marginal rates of substitution between the federal public good \(G \) and the private good \(x \). RHS of equation (23) is the marginal cost of public funds (MCPF). As is well-known, this expression is the Samuelson’s rule for public good provision corrected by Atkinson and Stern (1974).

After some manipulation with equations (21) and (22), using again Roy’s identity and the expressions (6) and (9), the second-best condition for the optimal provision of \(g \) can be written as follows:

\[
\frac{nV'\omega_g}{\lambda} = \frac{1}{1 - \frac{\tau'}{\tau}} \left(1 - n\tau l' \omega_g - \pi_g \right) \quad (24)
\]

\(^7\)Wildasin (1986) demonstrates that it is relevant to distinguish between to maximize the per capita utility or the total utility. As cited by Mansoorian and Myers (1995), considering the total utility of households as objective function implies that each state authority has a preference for the population size. With symmetric equilibria, this issue is not crucial, but it would prevent the extension of the results to an environment in which households mobility is allowed. See footnote 3.
The LHS of latter condition is the sum of marginal benefits coming from one additional unit of g in terms of the private good x. The RHS of (24) is the marginal cost of providing the public input (MCP), which in turn can be decomposed into the $MCPF$ and the tax revenue effect that arises as long as the public input g may affect positively or negatively the tax bases through labor productivity and economic profits. Whereas in the case of the consumption public good the $MCPF$ and the MCP are identical, this distinction is required when the public input is taken into account.

Comparing expressions (23) and (24) a simple result for later use is obtained:

Proposition 1 *In a unitary country with a positive optimal tax rate and $\pi_g > 0$, the marginal cost of public funds is higher than the marginal cost of providing the public input g (Sufficient condition).*

If the Roy’s identity is used in the LHS of (24), and expressions (5) and (8) are inserted in (24), manipulation gives:

$$ F_g = 1, \quad (25) $$

that is, the production efficiency condition for the provision of public inputs (Diamond and Mirrlees, 1971). It means that the production effects of the public input are equal to its marginal production cost, though distortionary (but optimally set) taxation to be used8.

4 Vertical externalities when federal and state governments play Nash

The existence of different levels of government may alter the behavior of the agents if they share the same tax base and/or public spending coming from the state governments is able to modify the federal budget constraint. This section deals with the optimal conditions involved when state and federal governments behave as Nash competitors, that is, each government takes as given the tax rates and the level of public expenditure implemented by other governments. Hence, state’s optimization problem consists of choosing the

8For further discussion, see Feehan and Matsumoto (2002).
values for g and t in order to maximize the per capita utility of the state, taken its own budget constraint into account. Formally,

$$\text{Max } V (\omega (g, \tau, n) - \tau) + B(G)$$

$$\text{s.t. : } g = ntl (\omega (g, \tau, n) - \tau) + (1 - \theta) \pi (g, \tau, n) + S \quad (26)$$

First order conditions we obtain are:

$$V' \omega_g - \mu + \mu ntl' \omega_g + \mu (1 - \theta) \pi_g = 0 \quad (27)$$

$$(\omega_r - 1) V' + \mu n \omega_g + \mu (\omega_r - 1) ntl' + \mu (1 - \theta) \pi_r = 0, \quad (28)$$

The expression that relates marginal benefits and costs of providing the public input at state level can be derived as before:

$$\frac{nV' \omega_g}{\lambda} = \frac{1}{1 - \frac{\mu'}{T} - \theta F_{L} n l'} \left(1 - ntl' \omega_g - \pi_g (1 - \theta) \pi_g \right) \quad (29)$$

Again, the RHS of equation (29) shows the marginal cost of public input provision when distorting taxes are used and different effects on state tax revenues are involved. A key question arises here about the optimality of this result when comparing to the second-best outcome. Our model yields the following Proposition:

Proposition 2 If $T \geq 0$ and dealing with the provision of public inputs g, the MCPF perceived by state governments that play Nash is smaller than the MCPF in a unitary country. However, the MCPF perceived by state governments may be higher, equal or smaller than in a unitary country.

Proof. Using $\tau = T + t$, an alternative expression of the RHS of equation (29) can be obtained:

$$\frac{1}{1 - \frac{\mu'}{T} + \frac{Tl'}{T} - \theta F_{L} n l'} \left(1 - ntl' \omega_g - \pi_g + nTl' \omega_g + \theta \pi_g \right) \quad (30)$$

First term is the MCPF. By assumption, $F_{LL} < 0$ so that denominator is bigger than that of expression (24); thus, the MCPF is smaller with state governments. Regarding the marginal cost of provision, nothing can be said about the magnitude of its second term in relation to (24). Note that by (8), π_g may have either sign. ■
The first part of the Proposition is a standard result in the literature, regardless a consumption public good or a public input to be considered. When a vertical tax externality exists, the MCPF for providing both kinds of public expenditures is perceived as lower by state governments. The second part of the Proposition pays attention upon the MCP, and claims that the sign of expenditure vertical externality is not determined, so that the state government may under or over-provide the public input.

In this regard, it can be stated that having a positive or negative vertical externality depends firstly on the relative magnitude of the changes in the MCPF and the tax revenue effect, and secondly on the sign of the effect of public inputs on rents. In particular, if it happens to be that \(\pi_g \geq 0 \) the sign of both combined vertical externalities will depend on the relative magnitudes of both terms in (30) because they change in opposite senses. By contrast, if \(\pi_g < 0 \) it may occur that both terms in (30) move in the same sense, and consequently an overprovision of public inputs takes place.

Although in general the indetermination is then present, some insights on the magnitude of the vertical expenditure externality are provided next. Let \(\psi = \frac{\text{MCP}_{g \text{U}}}{\text{MCP}_{g \text{S}}} \) be the ratio between the MCP in a unitary country and the MCP perceived by state governments, both of them referring \(g \) (the RHS of equations (24) and (29), respectively). In terms of the above Proposition 2, we would say now that such ratio \(\psi \) may be lower, equal or higher than 1; in other words, the state government may provide a level of public input below (\(\psi > 1 \)), equal (\(\psi = 1 \)), or higher (\(\psi < 1 \)) than the optimal level, respectively. Next Proposition broadens the characterization of difference between the MCP in a unitary versus a federal country measured by \(\psi \).

Proposition 3 Ceteris paribus,

i) \(\psi \) is decreasing in the elasticity of wage rate to \(g \) if \(T > 0 \)

ii) \(\psi \) is decreasing in the marginal productivity of \(g \) if \(0 < \theta < 1 \).

iii) \(\psi \) is increasing in the share of rents levied by the federal government \(\theta \) when \(\pi_g \leq 0 \)

iv) \(\psi \) is increasing in the elasticity of the labor supply to the federal tax rate \(T \) (in absolute value).

Proof. i) Using the terms with \(\omega_g \) in the second term of (30) -and not present in (24)- and the expression (8) for \(\pi_g \), yields \(nTL'\omega_g + \theta nLF_{LL}'\omega_g \). Rearranging we can write that \((T - \theta L_{LL}) nL'\omega_g > 0 \), given (5), \(T > 0 \) (by assumption) and \(F_{LL} < 0 \).
ii) Using the expression (8) and $0 < \theta < 1$, an increase in F_g reduces the second term of (30). But this effect is bigger in the case of numerator of (24), hence ψ decreases.

iii) Differentiating the RHS of (29) with respect to θ yields

$$\frac{\left(1 - \frac{\nu}{\theta F_{LL} n'}\right) \pi_g - \left(1 - n t - (1 - \theta) \pi_g\right) \left(-F_{LL} n'\right)}{\left(1 - \frac{\nu}{\theta F_{LL} n'}\right)^2}.$$ Since both terms of the RHS of (29) are positive, then $F_{LL} < 0$ and $\pi_g < 0$ lead to a negative sign in the latter derivative. Thus, MCP_S^g is decreasing in θ, and ψ is increasing in θ.

iv) In the denominator of the $MCPF$ in the expression (30), the term T_f' is the elasticity of labor supply to the federal tax rate T (in absolute value).

In short, the higher the elasticity of wage rate to public inputs and the higher the marginal productivity of public inputs, the more likely is to find under-provision of public inputs. By contrast, the higher the federal tax rate on rents or the higher the elasticity of labor supply to the federal tax rate, the more likely is to reach overprovision of public inputs.

Parts i) and ii) of Proposition 3 show that the sign of vertical expenditure externality depends crucially on the tax revenue effect produced by public input provision. In fact, the more productive the public input, the more tax revenues accrued to both governments. Thus, the gap between what the state government perceived and what actually happens in terms of social welfare will be bigger, and it obviously will lead to under-provision of public inputs.

Part iii) follows an inverse argument. When the public input affects negatively rents, increasing the federal share on economic profits taxes is damaged for the federal government, so that the risk of overprovision of g rises.

Part iv) of Proposition 3 reconsiders the canonical statement by Dahlby and Wilson (2003), and later confirmed by Martinez (2008), that the vertical tax externalities do not affect public spending externalities. By contrast, we have found that the extent in which the MCP_S^g differs from the MCP_U^g (i.e., the sign and magnitude of the externality) depends on the tax rate set by federal government and/or whether labor supply is more or less sensitive to the federal tax rate. It means that both externalities are interrelated.

In some sense, our vertical expenditure externality holds certain similarities with horizontal externalities. Indeed, assuming a positive impact of state public input on federal tax revenues, it appears a trend towards the under-provision of g that can be seen as state tax rates being too low (as a result of fiscal competition in the case of horizontal extr-
In contrast with that, the reasoning followed by Dahlby and Wilson (2003) is based on the production efficiency condition and concludes that both externalities are independent each other. Nevertheless, papers by Blackorby and Brett (2000), Kotsogiannis and Makris (2002) and more recently by Martinez and Sjongren (2014) have proved that considering the production efficiency as criterion for assessing optimality in federal system may be inappropriate. Our model offers a clear insight about that. Using (5) and (8) in expression (29), the following is obtained:

\[
\left(\frac{nl\theta F_{Lg}}{F_g} + (1 - \theta) \right) F_g = 1
\]

(31)

i. e., the production efficiency does not hold when governments play Nash. If all the taxes on profits were levied by state government ($\theta = 0$), the above expression would become $F_g = 1$, that is, the efficiency in production of public inputs would be achieved but the condition for optimality is not still satisfied (see equation (29) with $\theta = 0$)10.

5 Federal government plays as Stackelberg leader

The analysis now proceeds by exploring the equilibrium outcome achieved when the federal government behaves as Stackelberg leader, anticipating the effects of its actions on the states’ decisions. In this context, the federal government sets its tax rate taking as given the states’ reaction function, and is able to replicate in principle the second-best outcome reached by the government in a unitary country. However, the success of this policy is very sensitive to whether the federal government has unrestricted access to vertical transfers or not. As Keen (1998) points out, if vertical transfers are

10Translating this argument to Dahlby and Wilson’s (2003) model, we reach the same conclusion. Using their expressions (6) and (16), an optimal federal tax rate T^* removing both vertical externalities can be achieved (we do something similar in the next section); however, inserting that T^* into their expression (19), the production efficiency is not fulfilled. In other words, the optimality conditions in federal systems and production efficiency do not necessarily coincide.
not available for federal government, to achieve the second-best allocation is not straightforward, even when the states’ reaction function is known.

Our aim here is to shed some light about the ability of federal government to get the second-best outcome when a public input is provided. Vertical transfers are not allowed for the federal government, whose only instrument to affect the behavior of the states will be the tax rate T. This approach seeks to show not only how the conclusions of the main branch of literature may be modified when policy instruments are restricted, but also to know under which assumptions a federal system with no vertical transfers is able to achieve the second-best allocation. This environment also permits dealing with features of real federations, namely, the intergovernmental grants are not usually designed to correct vertical externalities, and constitutional arrangements sometimes prevent the use of vertical transfers exclusively based on efficiency criteria.

We should question first whether there exists an optimal federal tax rate that corrects both vertical externalities. Following Boadway and Keen (1996), we define the marginal vertical externality as follows:

$$\gamma = G_t + G_g,$$

that is, taking into consideration the negative and/or positive effects on federal revenues generated by states by means of their own taxes and the provision of public inputs. As at an optimum $\gamma = 0$, inserting (12) and (13) in (32), and solving for T the optimal federal tax rate T^* we find is:

$$T^* = \frac{-\left(\pi_t + \pi_g\right) \theta}{(\omega_t + \omega_g - 1) t n} \leq 0$$

Since there are no vertical transfers between different levels of government, federal tax rate T is the unique instrument to offset the two opposite effects that states’ decisions have on the federal revenues. The first effect comes from the fact that state tax rates exert a negative impact on federal budget constraint; as pointed out by Boadway and Keen (1996), in that case the federal government should subsidy the (common) tax base that, as a result of the tax externality, is over-exploited. But secondly, it is also likely that the provision of public inputs increases the federal revenues (positive expenditure externality); thus if it happens to be that t follows T then it may be convenient having a positive federal tax rate to encourage the state taxes. This way, the resources for public input provision will rise. Note that
in accordance with the Proposition 3 (iv), the MCP^g_S is decreasing in T^F_T (ψ is increasing in T^F_T), so T may stimulate the spending in g.

We turn now to the characterization of the state’s reaction function with respect to the federal tax rate. So far, each level of government acted independently; under the new framework, by contrast, the federal government knows the effects of its policy on state’s behavior. From the state optimization problem (26), it can be readily seen that

$$V' \omega g_t + (\omega_T - 1) V' = 0. \quad (34)$$

Differentiating this expression with respect to T we obtain:

$$(\omega_T - 1) (1 + t_T) V'' \omega g_t + (1 + t_T) V' \omega g_T + V' \omega g_T t_T + V' \omega g_t t_T + (\omega_T - 1)^2 (1 + t_T) V'' + V' \omega_T (1 + t_T) = 0$$

As $g_T = g_t + (\omega_T - 1) l^T n$, rearranging terms and solving for t_T, the above equation can be rewritten as follows:

$$t_T = -\frac{(\omega_T - 1) V' \omega g T}{(\omega_T - 1) V'' \omega g_T + V' \omega g_T + V' \omega g_T t_T + (\omega_T - 1)^2 V'' + V' \omega_T} - 1 \quad (35)$$

i.e., the state’s reaction function. Given the assumptions of our model, the sign of t_T is unclear ($t_T \leq 0$). In other words, the state tax rates may react ambiguously to changes in the federal tax rate.

Even regarding a more general approach, the doubts about the effects of changes in federal taxes on the national tax rate of the federation remain: the sign of $1 + t_T$ continues being indeterminate11. This ambiguity comes from the unclear net effect of the two vertical externalities when they are jointly considered. Whereas in the case of Boadway and Keen (1996) there exists a remarkable tendency towards over-provision (and the subsequent increase in all tax rates), under-provision of public inputs (or equivalently, state tax rates being too low) can be found when expenditures externalities are taken into consideration. If this is the case, the national tax rate τ may well go down when the federal government increases its tax rate.

Aimed at assessing how is the response of the state tax rate to changes in the lump-sum transfer, expression (34) is differentiated with respect to S to write:

$$(\omega_T - 1) V'' \omega g_T t_S + V' \omega g_T t_S + (\omega_T - 1)^2 V'' t_S = 0, \quad (36)$$

11Note that $1 + t_T = \frac{dT}{d\tau}$.
that leads to \(t_S = 0 \), that is, the tax rate is unaffected by the transfer\(^{12}\). Contrary to Boadway and Keen (1996), where this situation is caused by a linear utility function in \(G \), our model does not recognize any ability of the vertical transfer for influencing \(t \), regardless the properties of the utility function. It means that income effects go entirely to the provision of the state public input. Moreover, this is consistent with the null role played by vertical transfers as policy instruments in our model.

At this point, the federal’s optimization problem we have to solve is the following:

\[
\begin{align*}
\text{Max} & \quad V(\omega(g(t,T,\theta, S), \tau, n) - \tau) + B(G(T,t,\theta, S, g(t,T, \theta, S))) \\
\text{s.t.} & \quad t = t(T, \theta, S)
\end{align*}
\]
(37)

As can be seen, both the objective function and the federal constraint take into consideration the behavior of the states and the influence of federal decisions on them. In such a way, the federal government chooses \(T \) regarding the first order conditions obtained for state government. Formally:

\[
[(g_tT + g_T) \omega_g + (\omega-1)(1 + t_T)] V' + B'(G_T + G_tT + G_gT) = 0
\]
(38)

Using expression (34) and rearranging terms, one obtains:

\[
\frac{knB'}{\lambda} = \frac{nV' \omega_g}{\lambda} \left(\frac{1}{1 + \left(\frac{w}{T} - n \right) Tl' \omega_g + \left(\frac{w}{n} - 1 \right) \theta \pi_g + \frac{(1 + \omega_T)G_T}{knl}} \right),
\]
(39)

where (11) and (16) have been used. Expression (39) relates the MCP of \(G \) at federal level (\(MCP^F_G \)) to the MCP of \(g \) at state level (\(MCP^S_g \)) when the former government behaves as Stackelberg leader and the latter one as follower. Note that if the tax bases are not shared and the provision of public inputs corresponds to the central government exclusively, i. e., \(t = g_t = G_t = 0 \) and \(\theta = 1 \), expression (39) trivially becomes

\[
\frac{knB'}{\lambda} = \frac{nV' \omega_g}{\lambda} \left(\frac{1}{1 - nTl' \omega_g - \pi_g} \right),
\]
(40)

that is, the relation between the MCP of \(G \) and the MCP of \(g \) at second-best optimum in a unitary country.

\(^{12}\)This result is based on the assumptions of the model after some manipulation in (36). Details are available upon request.
Given these two alternative relationships between the \(MCP \) under different scenarios, a discussion can be initiated about whether the federal government is able to replicate the second-best solution. Let \(\eta = \frac{MCP_G}{MCP_g} \) be the variable that relates both \(MCP \) assuming Stackelberg approach. The relevant issue here is to know to what extent this variable differs from 1; this way, we will know whether the federal structure of the country leads to an under or over-provision of the public input, using the unitary solution as benchmark.

Proposition 4 If federal government plays as Stackelberg leader (with \(T^* > 0 \)) and \(\pi_g \geq 0 \), then \(\eta \leq 1 \). Hence, \(MCP_G \) may be higher, equal or smaller than \(MCP_g \), and the replication of the second-best outcome is not guaranteed.

Proof. Using (16) and rearranging terms, the expression in parenthesis in equation (39), i.e., the ratio \(\eta \) can be rewritten as follows:

\[
\frac{1}{1 + \frac{g_T}{kn_T} [G_g + (1 + t_T) G_t]}
\]
(41)

By (6) and (9), \(g_T < 0 \); if \(\pi_g \geq 0 \), then \(G_g > 0 \) when \(T^* > 0 \), and \(G_t < 0 \) by (9), \(\forall T^* > 0 \). As \(1 + t_T \leq 0 \), we are not sure if the denominator of (41) is higher, equal or smaller than 1. So \(\eta \leq 1 \).

Proposition 4 questions the ability of the federal government to achieve the second-best optimum with no vertical grants as policy instrument. Notice that in a unitary country, also with \(\tau > 0 \) and \(\pi_g \geq 0 \), the \(MCP \) of \(G \) is unambiguously higher than the \(MCP \) of \(g \) (Proposition 1). From Proposition 4 a necessary condition to ensure the second-best optimum must be established:

Corollary to Proposition 4 Federal government that plays as Stackelberg can achieve the second-best outcome if, and only if, \(1+ t_T > 1 \), or what is the same, \(t_T > 0 \).

Proof. Given that the necessary condition for achieving an optimal result is that (41) to be higher than 1, and since \(g_T < 0 \), \(G_g > 0 \), and \(G_t < 0 \), we need to have \(G_g + (1 + t_T) G_t > 0 \). Inserting here the expressions (5), (6), (8), (9), and the optimal federal tax rate \(T^* \) (33), it can be seen that \(1 + t_T > 1 \) is required to obtain that the expression (41) to be higher than one. Number of households has been normalized to 1 for making easier the proof.

The central point then to internalize vertical externalities lies in the states’ reaction function. Particularly, the necessary condition is that the
state governments increase their taxes after the federal government rise its tax rates, and vice versa; only this way the federal policy-makers acting as Stackelberg can correct vertical externalities. One of the main implications stemming from it is that the effectiveness of federal policy crucially depends on an empirical issue because the sign of t_T is theoretically ambiguous.

6 Concluding remarks
Sharing tax instruments between federal and subnational governments is a common feature in federations. It allows that different levels of government to be involved in financing their own public expenditures. However, the concurrency of tax power on the same tax base causes that vertical tax externalities appear, and a deviation of the results from the second-best allocation is guaranteed.

Vertical externalities also arise when the public spending provided by one level of government affects other government’s decisions. This is the case, for instance, of public inputs such as public investment, education and so on, that may exert different impacts on the tax revenues accruing to other governments. This second vertical externality has received less attention in the literature on fiscal federalism, though real examples can be found in countries such as United States, Australia and Spain, or in supranational structures as the European regional policies.

This paper presents a model in which the federal and state governments set per unit taxes on labor to finance two types of public expenditures. Federal government provides a consumption public good, while the state governments supply a productivity-enhancing public input. Second-best allocation is reached in a unitary country, and used as benchmark for subsequent comparisons. When Nash behavior is to be assumed for governments, a vertical externality arises from the provision of public inputs and from the tax externality as well. While the former exerts an ambiguous effect on the federal tax revenues, the latter presents a clear negative influence. In this model, the sign and extent of the expenditure externality depend on the tax externality, amongst other things. Here, it has been proved that using the production efficiency condition as optimality criterion in federal systems leads to incorrect conclusions. Moreover, our results drive to distinguish between the cost of the public funds and the provision cost of the public input, which includes the former and the tax revenue effect as well.
The ability of federal government to achieve the second-best outcome has been studied too. Our approach restricts the policy instruments available for the federal government, particularly vertical transfers for efficiency purposes. In this context, we cannot ensure that the federal government behaving as Stackelberg leader replicates the second-best result. We only have some guarantees of that when the states’ reaction function indicates that an increase in the federal tax rate is followed by an increment in the state tax rate, and vice versa. Another result we find is that the optimum federal tax rate has not to be necessary negative in order to correct both vertical externalities.

We claimed at the beginning of the paper that new (but, in a sense, still present) policy challenges are closely related to vertical externalities. The way through which academics face them will be for sure pretty sensitive to the extension of our knowledge on them and the reconsideration of some of the widely accepted previous findings. In this context, further research can be initiated on the basis of this paper. One interesting point would come from introducing in our model households mobility across heterogeneous regions. It would affect efficiency of the equilibria, which would have to be restricted in order to avoid multiple solutions. Moreover, horizontal externalities would arise and the set of policy instruments probably should be enlarged to take into consideration transfers between governments; otherwise, replicating the second-best outcome may become impossible.

Second, given the critical role of the states’ reaction function on the effectiveness of federal policies, empirical researches could focus on how the state governments modify their behaviors when facing federal decisions. To the best of our knowledge, there is a stimulating lack of empirical papers on this issue. Papers such as Besley and Rosen (1998), Esteller-More and Sole-Olle (2001) or Anderson et al. (2004) could be enlarged to deal explicitly with issues related to the interplays between the expenditure and tax externalities and the MCP. The empirical analyses should consider here not only the MCP, but also the tax revenue effect arising when there exist complementarities between public spending and tax revenues.

References

